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Abstract 

Model independent analysis (MIA) can be used to obtain all the eigen modes included in 

the turn-by-turn BPM data.  Not only the synchrotron tune and betatron tune can be 

obtained from the fast Fourier transforms (FFT) of the temporal eigen vector of the 

corresponding mode, but also the error mode, which could be caused by the different gain 

of a BPM, can be observed in both the temporal and spatial eigen vectors of the error 

mode.  It can be applied as a diagnostic tool for Booster. 

Introduction 

The turn-by-turn data from all the BPM can be used to form a BPM matrix (BM×N).  The 

single-turn data from all the BPM form a row in the matrix.  And the column number is 

equivalent to the BPM number.  Once the BPM matrix is formed, MIA can be used to 

obtain all the eigen modes, which form a complete basis of the BPM matrix.[1]  Since the 

number of orbits (M) is greater than the number of BPM (N), the maximum number of 

eigen modes is determined by the BPM number.  Only several eigen modes are 

considered to be significant to the orbit, and other modes are neglected as noises.  

Generally, two betatron modes and one synchrotron mode due to non-zero dispersions at 

BPM locations are observed.[1]  If more modes are observed, they are generally caused 

by the incorrect gain of a BPM, or some other errors.  So finding the cause of an 

unexpected mode can be used for the diagnostic purpose. 

 

Method 

Single value decomposition (SVD), as shown in eq.1, is used to calculate all the eigen 

modes and eigen vectors of the BPM matrix (B).[2] 
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Each element Si,i of the S matrix represents the eigen value of the ith eigen mode, and the 

eigen value decreases with the increase of the number i.  The ith column of the U matrix is 

the temporal eigen vector of the ith eigen mode, and ith row of the VT matrix is the spatial 

eigen vector of the ith eigen mode.  MATLAB is used for the SVD decomposition of the 

BPM matrix. 

 

Simulation and Results 

The nth BPM reading at the mth turn (xn(m)) can be written as the summation of three 

different terms, as shown in eq.2.[3] 
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Eq. 2 was used to generate the B matrix with the input of the lattice file from MAD.[4]  

xco is set to be zero due to the consideration of the difference orbit.  Also, the operational 

parameters were used in the calculation.  They are the synchrotron tune Qs=0.05, 

horizontal betatron tune Qx=6.7, chromaticity ξ=6, the number of BPM N=48, and the 

number of tracking turns M=128.  The beam was excited both transversely and 

longitudinally at the 0th turn with a 1-mrad angle kick at the 1st BPM and a momentum 

offset δ=0.005.  The 1st turn and 128th turn orbits are shown in Fig. 1(a) as the red and 

black curves separately.  Eigen values of all the modes are shown in Fig. 1(b).  There are 

three significant modes, and they are caused by the synchrotron motion and betatron 

motion of the beam.  Their temporal eigen vectors are shown in Figs. 1(c), 1(e), and 1(g) 

for modes 1, 2, and 3 separately, and their corresponding spatial eigen vectors are shown 

in Figs. 1(d), 1(f), and 1(h).  Their unnormalized power spectrums are shown in Figs. 

1(i)-(k).  Also, chromatic sidebands appear in the unnormalized power spectrum of both 

betatron modes, as shown in Fig. 1(j) and Fig. 1(k).[3] 

The above simulation was repeated at different gains of the 1st BPM.  When the gain of 

the 1st BPM is set to be 1.5, eigen values of all the modes are shown in Fig. 2(a).  There 

are four significant modes, and they are the error BPM mode, synchrotron mode and two 

betatron modes.  Eigen values of the synchrotron mode and two betatron modes in Fig. 

2(a) are the same with those in Fig. 1(b), and they are much smaller than the eigen value 

of the BPM error mode, as shown in Fig. 2(a).  The temporal eigen vector of mode 1 is 
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shown in Fig. 2(b), its unnormalized power spectrum and spatial eigen vector are shown 

in Figs. 2(c) and (d) separately.  Also, the eigen value of the BPM error mode changes 

with the gain of the 1st BPM, as shown in Fig. 2(e), however, eigen values of the 

synchrotron mode and two betatron modes stay the same.   

Instead the 1st BPM has a different gain since the 1st turn, it had a different gain from the 

60th turn.  Eigen values of all the modes are shown in Fig. 3(a).  The temporal eigen 

vector of the BPM error mode (mode 1) is shown in Fig. 3(b), its unnormalized power 

spectrum and spatial eigen vector are shown in Figs. 3(c) and (d).  The eigen value of the 

BPM error mode changes with the gain of the 1st BPM, as shown in Fig. 3(e). 

 

 
Conclusion 

From the power spectrum of the synchrotron mode and two betatron modes, the 

synchrotron tune and the betatron tune can be obtained.  Also, whenever the gain of the 

BPM is set at a wrong value, an extra BPM error mode will be observed.  The temporal 

eigen vector of the BPM error mode can be used to extract the time when the gain of the 

BPM starts to be wrong, as shown in Fig. 2(b) and Fig. 3(b), and the spatial eigen vector 

can be used to obtain the position where the BPM error is, as shown in Fig. 2(d) and Fig. 

3(d). 
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Fig. 1(a) 
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Fig. 1(b) 
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Fig. 1(c) 
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Fig. 1(d) 
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Fig. 1(e) 
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Fig. 1(f) 
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Fig. 1(g) 
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Fig. 1(h) 
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Fig. 1(i) 
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Fig. 1(j) 
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Fig. 1(k) 
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Fig. 1(a) the 1st turn and 128th turn orbits calculated at the following conditions: the 

synchrotron tune Qs=0.05, horizontal betatron tune Qx=6.7, chromaticity ξ=6, after the 

beam was excited both transversely and longitudinally at the 0th turn with a 1-mrad angle 

kick at the 1st BPM and momentum offset δ=0.005. 

Fig. 1(b) eigen values of all the modes. 

Fig. 1(c) the temporal eigen vector of mode 1. 

Fig. 1(d) the spatial eigen vector of mode 1. 

Fig. 1(e) the temporal eigen vector of mode 2. 

Fig. 1(f) the spatial eigen vector of mode 2. 

Fig. 1(g) the temporal eigen vector of mode 3. 

Fig. 1(h) the spatial eigen vector of mode 3. 

Fig. 1(i) the unnormalized power spectrum of the temporal vector of mode 1. 

Fig. 1(j) the unnormalized power spectrum of the temporal vector of mode 2. 

Fig. 1(k) the unnormalized power spectrum of the temporal vector of mode 3. 
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Fig. 2(a) 
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Fig. 2(b) 
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Fig. 2(c) 
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Fig. 2(d) 
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Fig. 2(e) 

Fig. 2(a) set a different gain at 1.5 for the 1st BPM while keeping other conditions the 

same with Fig.1, eigen values of all the modes. 

Fig. 2(b) the temporal eigen vector of mode 1. 

Fig. 2(c) the unnormalized power spectrum of the temporal vector of mode 1. 

Fig. 2(d) the spatial eigen vector of mode 1. 

Fig. 2(e) the eigen value of the BPM error mode vs. the gain of the 1st BPM. 
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Fig. 3(a) 
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Fig. 3(b) 
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Fig. 3(c) 
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Fig. 3(d) 
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Fig. 3(e) 

Fig. 3(a) change the gain since the 60th turn from 1 to 1.5 for the 1st BPM while keeping 

other conditions the same with Fig.1, eigen values of all the modes. 

Fig. 3(b) the temporal eigen vector of mode 1. 

Fig. 3(c) the unnormalized power spectrum of the temporal vector of mode 1. 

Fig. 3(d) the spatial eigen vector of mode 1. 

Fig. 3(e) the eigen value of the BPM error mode vs. the gain of the 1st BPM.  The blue 

curve represents the different gain of the 1st BPM starts at the 60th turn, and the red curve 

starts at the 1st turn. 

 

 12


	Method
	Simulation and Results
	Conclusion
	Acknowledgements
	References:

